High resolution SLODAR measurements on Mauna Kea

T. Butterley, R.W. Wilson, M. Chun, R. Avila, J.L. Aviles

Sardegna, 15 September 2008
Overview

- Short turbulence profiling campaign carried out in September 2007
- Carried out by the Gemini ground layer turbulence profiling team
- High resolution SLODAR experiment on the University of Hawaii 88-inch (2.2 m) telescope
Aims

• Extension of the SLODAR technique to very high spatial order
• Measure complete $C_n^2(h)$ profile
• Measure turbulence velocity profile
• Investigation validity of Taylor frozen flow approximation
• Explore implications for layer-oriented predictive AO reconstruction algorithms
Instrument

- Mounted at f/10 Cassegrain focus of the telescope
- 32 x 32 subaperture Shack-Hartmann WFS
- Andor DV885 EMCCD (effectively zero read noise), 1000x1000 pixels binned 2x2
- Exposure time 2-4 ms, frame rate ~ 50 Hz
- Target separation ~20 arcsec, vertical resolution 400-700 m
Instrument

- Shack-Hartmann spot patterns were interleaved on the detector.
- Some subapertures were significantly vignetted by “spiders” (secondary mirror supports).
- Centroiding is a challenge.
Data reduction

2D centroid cross-covariance

1D cut through the 2D cross-covariance
Theoretical response functions
Turbulence profile

\(C_n^2(h) \) extracted from the 2D cross-covariance.

\(r_0 = 17.5 \text{ cm} \)
Velocity measurements

- Temporal cross-covariance in steps of 17.5 ms
- Independent motion of multiple layers clearly visible
- Currently don’t have software to automatically extract velocities

Movie
Ongoing work

• Improved centroiding algorithm

• Automated velocity fitting (essential for Taylor measurements)

• Scintillation: currently fitting theoretical response functions based on geometrical propagation
Lessons learned

- Use larger diameter optics (to reduce static aberrations)
- Also use wider SH spot spacing (easier to centroid)
- Use larger subapertures to limit scintillation
Summary

• We deployed a 32x32 Shack-Hartmann WFS on the UH 88-inch telescope

• Instrument provides $C_n^2(h)$ profiling of the whole atmosphere with a vertical resolution of 400-700 m

• We can make detailed measurements of turbulent layer velocities, including velocity dispersion within layers

• With better data analysis we can extract information about the validity of the Taylor frozen flow approximation
SLODAR analysis of data from MAD

T. Butterley, J. Kolb, R.W. Wilson
SLODAR analysis of MAD data

- Deployed on VLT UT3 visitor Nasmyth focus
- Successfully achieved closed loop MCAO on-sky in March 2007
- Has 3 Shack-Hartmann WFSs, each with 8x8 subapertures
- Allows turbulence profiling from inside VLT dome
SLODAR analysis of MAD data

- Vertical resolution ~ 2 km
- Large 8 m aperture is ideal for measuring wind velocities
- WFS frame rate is ~400 Hz, although 20 Hz is fast enough for us
- We have both open- and closed-loop centroids (we can reconstruct pseudo-OL centroids from CL centroids + DM control vectors)
SLODAR analysis of MAD data
Initial results are promising...

Contact Johann Kolb (jkolb@eso.org) for more information about MAD
Surface layer SLODAR

J. Osborn, R.W. Wilson, T. Butterley
Surface layer SLODAR

- Measures the surface layer with vertical resolution of 10 m or less
- Implemented on a 14” Celestron telescope
- Each star has its own WFS (lenslet + CCD), thus allowing very wide binary targets to be used (e.g. 16 arcmin)
Surface layer SLODAR

- 2 Andor Luca cameras (EMCCD, 640x480 pixels, USB 2 interface)
- Cameras are smaller and lighter than iXon but have lower QE and slower readout (so limited choice of targets)
- See poster for more information
Movie